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Abstract—The forced torsional vibratory motion of a rigid body with a circular base on the surface
of a transversely isotropic material is investigated by using the method of Hankel transform. The
infinite integral involved is evaluated through a contour integration to be discontinuous in nature.

The dynamic contact shear stress, the total applied torque. and the real-valued rotational
displacement functions are calculated and expressed in terms of the frequency factor and the ratio
of the anisotropic material constants. The resonant amplitudes and frequencies of vibration are
shown to depend on the anisotropic material constants and the mass ratio.

INTRODUCTION

The forced vertical vibration of a rigid body with a circular base on an infinite, transversely
isotropic material was investigated recently with the Hankel transform techniques and
contour intcgration (Tsai, 1988). The resonant amplitude was shown to depend strongly
on the anisotropic material constants, the mass ratio, and the vibration frequency. Many
fiber-reinforced composite materials and platelet systems are described as transversely
isotropic materials and have five clastic constants (Christensen, 1979 ; Postma, 1955). A
layered system of typical earth materials, such as limestone and sandstone, was also
deseribed as a transversely isotropic material (Postma, 1933).

The foreed torsional vibration of a body with u circular basc on an infinite isotropic
material has been shown to depend on the forcing frequency and the medium properties
(Arnold ¢r al., 1955). The forced vibration problem for a body with a circular base has its
application both in the vibrations of a machine foundation (Arnold ¢f al., 1955) and in the
carthquake research on the dynamic soil-structure interaction (Luco and Westman, 1971).

The widespread use of composite materials in structural applications has generated
considerable interest in the behavior of anisotropic materials. The forced torsional vibration
of a rigid body with a circular base on an infinite, transversely isotropic material is
investigated in the present work. The method of Hankel transform is used to solve the
cquation of motion and satisfy the mixed boundary conditions. The infinite integral involved
is evaluated through a contour integration. The results reveal the discontinuous nature of
the infinite integral,

The dynamic contact shear stress and the total applied torque are shown to be depen-
dent on the foreing frequency and the anisotropic material constants. The real-valued
displacement functions are obtained and calculated numerically for different values of
frequency factor and sample matcerial constants. The resonant amplitude and frequency are
also investigated in terms of the mass ratio and the material anisotropy.

BASIC EQUATIONS
The stress-strain relationship in cylindrical coordinates (r, 0, 2) for a transversely iso-
tropic medium can be written in the following form (Tsai, 1988 ; Christensen, 1979 ; Postma,
1955) :
a, = Cyy err +C12 e:m'*‘ﬁ; e::
Gog = C12 €.+ Ca+Cy3 €.
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G.. = (3 € HCra gy TC31 €22
O,- = C33 €., O0,. = Cy3 Cye
U,n:(c“—('l:) e,,,‘l (1)

The --axis is along the axis of symmetry of the material. The circular base with radius a of
a rigid body is assumed to rest on the free surface of the medium at = = 0. The base undergoes
a torsional vibration about the z-axis with a circular frequency w. The displacement field
of the medium’s dynamic response to the vibration can be described as (0. L. 0). In response
to the forced vibrations, the circumferential displacement can be written as

(-VH =r emn (:)

where 7 is the time variable. If the strain-displacement relations and the stress—strain
relations in eqn (1) are used, the equations of motion have only one nonvanishing com-
ponent as follows.

| clre ot AU, .
Slcn—can) alr (;;'r'(rUu) tess 5o = A4 )

Sl cT”

where A is the density of the medium. If the first-order Hankel transform is applicd to eyn.
(3) over the variable r, the transtormed equation in terms of the parameter s has the
following form:

(‘)Iljl s
sy =gt =0 H
0z”

3= (e —ci) 2 gi=sT—w(e8) N = cn/A (5)

where 6' is the first-order Hankel transform of ¢
The boundary condition and the contact stress on the free surface - = 0 can be written
as

Uy= —rb,e"™ r<ua (6)

<
5 = {r(r,m) r<u 7

0 r>a

where 6, is the amplitude of the rotation of the disk about the vertical z-axis. The unknown
contact shear stress t(r, ) is to be determined later. For the boundary conditions prescribed.,
the solution of the transformed displacement in eqn (4) can be written as

= A (8)

The shear stress g, in eqn (1) is calculated in terms of the displacement. The stress boundary
condition in egn (7) determines the unknown quantity in eqn (8) as

A= =t cudg. t =J rJy(sr)t dr )
]

where 7' is the first-order Hankel transform of the boundary shear stress in eqn (7).
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INTEGRAL EQUATION

The rotational displacement is calculated from eqn (8) in terms of eqn (9); it can be
written at = = 0 in the following form:

J Ji(sr)i' ds— léj‘ J(sr)(q—l)"ds (10)

The first-order Bessel function J,(x) results.from the inverse transform of eqn (8). If the
frequency approaches zero. the second term on the right-hand side of eqn (10) vanishes. In
other words, the first term on the right-hand side is the associated static circumferential
displacement.

To solve for the unknown contact shear stress t in eqn (10), the transform shear stress
is written in terms of a parameter function as follows:

U= -

C446

= Cesd f ' h(t?) sin (st) dt. (1
0

If (11) is substituted into (10). the circumferential displacement for r < a becomes

rde 21 J‘ J i
’ h(t?) —— - — e (A, 1) dA dt (12)
¢ J;()r\/_ = v h() rz—-lz( )

(A1) = J‘r sin (sA) sin (s2)(s/g—1) ds. (13)

The first term on the right-hand side of eqn (12) results from the integration over the
paramcter s (Watson, 1966). The second term on the right-hand side is obtained after this
identity was used :

l ’ 9 by 172
Ji(sr) = ;,[)” sin (ns) (r* —n*)~ " dn. (14)

]9

The parameter function 4 is solved from the first term on the right-hand side of eqn (12),
and the result can be written as

5

h(n*) = ho— = f h(e*)I(n, 1) dt (13)

h0=—315f—’if’——dr. (16)
nndn nE—r

The operation on the right-hand side of eqn (16) indicates the procedure to solve for A from
(12). The second term on the right-hand side of (15) is obtained after integration by parts
over the variable r. The value of v in (16) can be seen from (6) to be equal to —rf, for
r £ a. Equation (15) is a Fredholm integral equation of the second kind with the unknown
h(n°).

CONTACT TORQUE AND RESONANCE

The contact shear stress is calculated through the inverse transform of eqn (11). The
infinite integration over the parameter s in the inversion integral is carried out (Watson,
1966) and the contact shear stress for r < a has the following form
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SO R .
T = — (340 J P dr. (17
=

The contact shear stress vanishes for r > a. This satisfies the prescribed condition in eqn
{7). The totwal torque exerted between the disk and the medium s calculated from (17) as
follows.

M = ZnJ - dr = 47{('“(5-' h(t*)e de. (18)
[} }

) {

To solve for the parameter function 4, the displacement function in (6) is substituted
into (16). The result after integrations is

hy =40.n/n. (19)

Thentegral Zinegns (13) and (15) 1s evaluated by the techniques of contour integration
(Tsai, 1988 Christensen, 1979 Postma, 1955) to have two different forms of expression
as follows.

J ST -57y e Msin (syyds, t>g
(

I(n.t)y = 5 (20)
J ST =) T Msin sty ds, t <y

where fi = o/ ¢,0. The integrations in eqn (15) are all of finite range. In view of the above
results, the parameter function Ain (15) 1s a complex-valued function. If the transformations
s = 8¢, n = an, and ¢ = am are introduced, cqn (20) can be written after integrations in the
following forms.

Ity = =Nn,m)/a, N=N +IiN, (20
AN () ' = Jih(n —m)/«?] ——JI[/\’(n+m),j¢):], H>m (22)
Jik(m=n)yjo) =S [kn+m}/d), n<m
1
Ni(n,m) = { J(0=¢)y Vsin (km/3) sin (kng /o)y dS (23)

where the frequency factor is & = wa/c,. To obtain nondimensional forms of solution, the
parameter function is normalized as /1(y°) = 40,ah(n’)n. The integral equation (15) is
reduced to the nondimensional form as follows:

2k (! .
hn?y =n+ 5 j B )N, m) dm. (24)
TaJ Ju

In terms of the nondimensionalized parameter function A(n7). the contact torque in eqn
(18) can be written as
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Fig. |. The rotational displacement functions F, and F,.

M= C.N(S(IJTO() (25)
!
g

Equation (25) has the following alternative form:
6.44(50300/M == F| +EF2 (2?)

where F, and F, are the real-valued displacement functions which result from the inverse
of the integral over /£ in eqn (26).

Composite materials and a layered geological system are used as example materials
for the study of the combined effects of the material anisotropy and the forcing frequency.
Graphite/epoxy and E glass/epoxy composites have been described as transversely isotropic
materials (Behrens, 1971). The material constants for graphite/epoxy composite are
¢y = 0.828, €53 = 8.68, ¢,; = 0.0285, ¢, = 0.2767, and ¢, = 0.4147; for E glass/epoxy
composite they are ¢, = 1.493, ¢3; = 4.727, ¢;;, = 0.5244, ¢, = 0.6567, and ¢,y = 0.4745,
all in the unit of 10* MN/m?. The constants for the limestone/sandstone layered system in
10 MN/m?arec,, = 6.25,c;; = 4.57, ¢, = 1.74, ¢, = 2.19 and c,, = 1.4 (Postma, 1955).

The nondimensional parameter function A(1%) is solved from the Fredholm integral
cquation in (24) by using the numerical procedures devised in Baker ¢t al. (1964). For an
isotropic material, c,4 is equal to the shcar modulus g, and the value of d reduces to unity.
The values of F, and F, in eqn (27) become independent of material constants (as was
pointed out in Arnold et al. (1955) for an isotropic material). The values of F, and F, are
calculated in terms of /& and depend on anisotropic material constants, as can be seen in
Fig. 1. The values of F, and F, for an isotropic material are in agreement with the
corresponding graphical value in Arnold er al. (1955).

The mass moment of inertia of the vibrating rigid body about the vertical axis, f,, is
often considered in practical applications. Equation (25) can be used to incorporate the
effects of the rotational inertia and yields the following nondimensional form (Tsai, 1988
Arnold et al., 1955).



1074 Y. M. Tsal

6
5 ———ee— LAYERED SYSTEM, b =2
i === {AYERED SYSTEM. b =6
A ~=eme- LAYERED SYSTEM, b= 10
| —————E GLASS/EPOXY COMPOSITE, b = 2
i ———— £ GLAS/EPOXY COMPOSITE b = §
al ~———— E GLASS/EPOXY COMPOSITE, b = 10

RESONANT AMPLITUDE

00 02 04 06 08 10 1.2 1.4 1.6 18 20
FREQUENCY FACTOR, k
Fig. 2. The torsional resonant amplitude and frequency.

lcas@®0o/ M| = [(T, —bk?[5) + T3] "1/ (28)

where the mass ratio is b = [,/ Aa’, with A as the medium density. For an isotropic material,
the resonant effects predicted by (28) are in agreement with the experimental results shown
in Arnold et al. (1955).

The resonant amplitudes for the E glass/cpoxy composite and the layered system of
limestone and sandstone are shown in Fig. 2 for various values of mass ratio and frequency
factors.

CONTACT SHEAR STRESS

The shear stress in the contact area in eqn (17) is calculated to have the following
form.

] ] 2
T = 0440 ,._r__—. M - J 4 “'/' [h(’ )] dep. (29)
\/uz—-rl a A

In terms of eqns (15) and (21)-(23), the derivative of the parameter function is written as

a 4 2 a " Sl
o = . - 2 0
8nh(" ) n00+ - ‘[) h(t )L ﬂz——«_szL(q,s, 1 ds de (30)
L=L(nst)+iLy(n,s0) (31)
sin (sn) sin (1), t<n
1= (32)
cos (sn) cos (s8), t>n

L, = cos (sn) sin (s¢). (33)

The differentiation in the second term on the right-hand side of eqn (29) is calculated in
terms of eqns (15) and (30). After normalization, the contact shear stress becomes
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Fig. 3. The normalized contact shear stress.

1’“(‘445 9(; ”:::::f(l)*' '““kf == H(") dn (34)

J1-p’ f

t 1 ‘:
H(n) =J l.'(m:)J = O, {,m) dC dim (35)
{13 {3 \/l __C‘

Q=0 (n{,my+iQ,(n,{,m) (36)
{kin sin (k{n)+cos (k{n)] sin (Km)/n? ' 37
= {[sin (kCn) — kZn cos (k{n)] cos (k{m)/n? (38)
Q. = [k{n cos (k{n) —sin (k{n)] sin (k{m)/n? 39)

where p = r/a. If the forcing frequency tends to zero, the second term on the right-hand
side of (34) vanishes. In other words, the first term on the right-hand side of (34) is the
associated static contact stress.

The normalized contact shear stress t/(4e,,00,/n) is calculated as a function of the
frequency factor and the material constants. Typical values are shown in Fig. 3.

DISCUSSION AND CONCLUSION

The torsional vibrations of a rigid body with a circular base on the surface of an infinite
transversely isotropic material are investigated by using the method of Hankel transform.
An infinite integral involved in the process of solution is evaluated through a contour
integration and shown to be discontinuous in nature. The dynamic contact shear stress is
shown to be a function of the forcing frequency and the anisotropic material constants. The
normalized dynamic contact stress is scen in Fig. 3 to decrease with increasing frequency.

The total dynamic torque is calculated from the contact stress. The real-valued dis-
placement functions, which account for the normalized ratio between the forcing rotational
displacement and the total torque, are expressed in terms of the frequency factor and the
material constant ratio d = (¢,;—c,2)/2c,;. The values of the functions are shown in Fig.
| for four different sample materials. The F, curves for the graphite/epoxy and E glass/epoxy
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composites are higher than the curve for the isotropic material. However, the £. curve for
the layered system of limestone and sandstone is seen in Fig. | to be lower than that for
the isotropic material. The F, curves have features similar to those for the F, curves at low
frequencies. At relatively higher frequencies. the relative positions of the F, curves are
reversed (Fig. 1).

The resonant amplitudes and frequencies shown in Fig. 2 depend on the material
constants, the mass ratio b, and the vibration frequency. The resonant amplitude increases
while the resonant frequency decreases if the value of the mass ratio increases. The resonance
of the layered system occurs at a relatively higher frequency than that for the E glass/epoxy
composite for the same mass ratio.
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